精英家教网 > 高中数学 > 题目详情
9.若a>b>c,a+b+c=0,则下列不等式一定成立的是(  )
A.a-b>b-cB.ab>acC.ab>bcD.a2>c2

分析 由条件可得a>0,c<0,再利用不等式的基本性质可得ab>ac,从而得到结论.

解答 解:∵a>b>c,且a+b+c=0,
∴a>0,c<0,
∴ab>ac,
故选:B.

点评 本题主要考查不等式与不等关系,不等式的基本性质的应用,判断 a>0,c<0,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某公司10位员工的月工资(单位:元)为x1,x2,…x10,其均值和方差分别为$\overline{x}$和s2,若从下月起每位员工的月工次增加200元,则这10位员工下月工资的均值和方差分别为(  )
A.$\overline{x}$,s2B.$\overline{x}$+200,s2C.$\overline{x}$,2002s2D.$\overline{x}$+200,s2+2002

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆锥的侧面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为(  )
A.90°B.120°C.150°D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知△ABC中,a=1,b=$\sqrt{2}$,B=45°,则锐角A等于(  )
A.30°B.45°C.60°或 30°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.新学年伊始,某中学学生社团开始招新,某高一新生对“海济公益社”、“理科学社”、“高音低调乐社”很感兴趣,假设她能被这三个社团接受的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被两个社团接受的概率;
(2)设此新生最终参加的社团数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an]是首项为2,公差为3的等差数列,Sn为数列{bn}的前n项和,且Sn=n2-2n
(1)求数列{an}及{bn}的通项公式an和bn
(2)若数列{an}的前n项和为Tn,求满足Tn<20bn时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a,b,c∈R,且b<a<0,则(  )
A.ac>bcB.ac2>bc2C.$\frac{1}{a}$$<\frac{1}{b}$D.$\frac{a}{b}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数据x1,x2,…,x8平均数为6,标准差为2,则数据2x1-6,2x2-6,…,2x8-6的方差为(  )
A.16B.4C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,$\overrightarrow{AB}$=(cos$\frac{3x}{2}$,-sin$\frac{3x}{2}$),$\overrightarrow{AC}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),其中x∈[$\frac{π}{6}$,$\frac{π}{3}$].
(I)若x=$\frac{π}{6}$,求|$\overrightarrow{BC}$|;
(II)记△ABC的边BC上的高为h,若函数f(x)=|$\overrightarrow{BC}$|2+λ•h的最大值是5,求常数λ的值.

查看答案和解析>>

同步练习册答案