精英家教网 > 高中数学 > 题目详情
求值
(1)已知向量
a
=(3,4)
b
=(sinα,cosα)
a
b
,则
4sinα-2cosα
5cosα+3sinα
的值
(2)已知tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3
,则tan(α+β)的值.
分析:(1)由向量
a
=(3,4)
b
=(sinα,cosα)
a
b
,知
sinα
cosα
=
3
4
,把
4sinα-2cosα
5cosα+3sinα
分子分母同时除以cosα,得到
4sinα
cosα
-2
5+
3sinα
cosα
,由此能求出结果.
(2)由tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3
,和tan(α+β)=tan[(α+
π
6
)+(β-
π
6
)]
,利用正切加法定理能够求出tan(α+β)的值.
解答:解:(1)∵向量
a
=(3,4)
b
=(sinα,cosα)
a
b

3
sinα
=
4
cosα

sinα
cosα
=
3
4

4sinα-2cosα
5cosα+3sinα
=
4sinα
cosα
-2
5+
3sinα
cosα

=
3
4
-2
5+3×
3
4

=
4
29

(2)∵tan(α+
π
6
)=
1
2
,tan(β-
π
6
)=
1
3

∴tan(α+β)
=tan[(α+
π
6
)+(β-
π
6
)]

=
tan(α+
π
6
)+tan(β-
π
6
1-tan(α+
π
6
)tan(β- 
π
6
)

=
1
2
+
1
3
1-
1
2
×
1
3

=1.
点评:第(1)题考查平面向量平行的性质的应用,是基础题.解题时要认真审题,注意同角三角函数的性质的灵活运用.
第(2)题考查正切加法定理的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,当
b
=(
3
25
4
25
)
时取等号,
所以x2+y2的最小值为
1
25

(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为
1
14
1
14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(4,3),
b
=(-1,2).
(1)求
a
b
的夹角θ(用反余弦的符号表示);
(2)若
a
b
与2
a
+
b
垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=( cosωx,cosωx),其中ω>0,记函数f(x)=
a
b
-
1
2
已知f(x)的最小正周期为π.
(1)求ω;
(2)求f(x)的单调区间;对称轴方程;对称中心坐标;
(3)当0<x≤
π
3
时,试求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

先阅读第(1)题的解法,再解决第(2)题:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,当
b
=(
3
25
4
25
)
时取等号,
所以x2+y2的最小值为
1
25

(2)已知实数x,y,z满足2x+3y+z=1,则x2+y2+z2的最小值为______.

查看答案和解析>>

同步练习册答案