精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x+m|+n,其中m,n∈R.
(Ⅰ)求证:m2+n2=0是f(x)是奇函数的充要条件;
(Ⅱ)若常数n=-4且f(x)<0对任意x∈[0,1]恒成立,求m的取值范围.
解(I)充分性:若m2+n2=0,则m=n=0,∴f(x)=x|x|,
又有f(-x)=-x|-x|=-x|x|=-f(x),∴f(x)为奇函数.
必要性:若f(x)为奇函数,∵x∈R,
∴f(0)=0,即n=0,∴f(x)=x|x+m|
由f(1)=-f(-1),有|m+1|=|m-1|,∴m=0.
∴f(x)为奇函数,则m=n=0,即m2+n2=0.
∴m2+n2=0是f(x)为奇函数的充要条件.
(Ⅱ)若x=0时,m∈R,f(x)<0恒成立;
若x∈(0,1]时,原不等式可变形为|x+m|<-
n
x
.即-x+
n
x
<m<-x-
n
x

∴只需对x∈(0,1],满足
m<(-x-
-4
x
)
min
m>(-x+
-4
x
)
max

对①式f1(x)=-x+
4
x
在(0,1]上单调递减.
∴m<f1(1)=3.③
对②式,设f&2(x)=-x-
4
x
,根据单调函数的定义可证明f2(x)在(0,1]上单调递增,
∴f2(x)max=f(1).
∴m>f2(1)=-5.④
由③④知-5<m<3.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案