精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,a=
3
,b=
2
,且B=
π
4
,则C=(  )
分析:由a,b及B的度数,利用正弦定理求出sinA的值,由A的范围,利用特殊角的三角函数值求出A的度数,由A和B的度数利用三角形的内角和定理即可求出C的度数.
解答:解:由a=
3
,b=
2
,且B=
π
4

根据正弦定理
a
sinA
=
b
sinB
得:
sinA=
asinB
b
=
3
×
2
2
2
=
3
2
,又A∈(0,
4
),
∴A=
π
3
3

则C=
π
12
12

故选C
点评:此题考查了正弦定理,以及特殊角的三角函数值,由B的范围,利用三角形的内角和定理确定出A的范围,进而求出A的度数是本题的突破点,此外本题有两解都满足题意,做题不要遗漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案