科目:高中数学 来源: 题型:
已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令cn=(-1)nSn(n∈N*),{cn}的前20项和T20=330.数列{bn}满足bn=2(a-2)dn-2+2n-1,a∈R.
(1)求数列{an}的通项公式;
(2)若bn+1≤bn,n∈N*,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中,(1)三角形两边之和大于第三边;(2)三角形的面积S=
×底×高;(3)三角形的中位线平行于第三边且等于第三边的
;…
请类比上述性质,写出空间中四面体的相关结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即
<k+1,则当n=k+1时,
=(k+1)+1,
所以当n=k+1时,不等式成立,则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( )
A.-1<b<0 B.b>2
C.b<-1或b>2 D.不能确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com