设椭圆:的左、右焦点分别为、,上顶点为,在轴负半轴上有一点,满足,且⊥.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过、、三点的圆恰好与直线相切,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,
若点使得以为邻边的平行四边形是菱形,求的取值范围.
科目:高中数学 来源: 题型:
F1F2 |
F2Q |
0 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年黑龙江高三上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.
(1)求椭圆的离心率; (2)若过、、三点的圆恰好与直线:相切,
求椭圆的方程;
查看答案和解析>>
科目:高中数学 来源:2012届山西省第一学期高三12月月考文科数学试卷 题型:解答题
设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com