精英家教网 > 高中数学 > 题目详情
2.已知180°<α<360°,则$\sqrt{1+cosα}$等于(  )
A.-$\sqrt{2}$cos$\frac{α}{2}$B.$\sqrt{2}$cos$\frac{α}{2}$C.-$\sqrt{2}$sin$\frac{α}{2}$D.$\sqrt{2}$sin$\frac{α}{2}$

分析 根据180°<α<360°求出cos$\frac{α}{2}$<0,用二倍角公式化简$\sqrt{1+cosα}$即可.

解答 解:∵180°<α<360°,
∴90°<$\frac{α}{2}$<180°,
∴cos$\frac{α}{2}$<0,
$\sqrt{1+cosα}$=$\sqrt{{2cos}^{2}\frac{α}{2}}$=-$\sqrt{2}$cos$\frac{α}{2}$.
故选:A.

点评 本题考查了用二倍角公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)=3|x-m|-1(m为实数)为偶函数,记a=f(log${\;}_{\frac{1}{3}}$4),b=f(log35),c=f(m),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知关于x,y的方程C:x2+y2-2x-4y+m=0
(1)若方程C表示圆,求m的取值范围;
(2)若圆C与圆x2+y2-8x-12y+36=0外切,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设α角属于第二象限,且|sin$\frac{α}{2}$|=-sin$\frac{α}{2}$,则$\frac{α}{2}$角属于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在5个球中有3个红球,2个白球(各不相同),不放回的依次摸出2个球,则在第一次摸出红球的条件下,第2次也摸出红球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,判断直线l与曲线C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\frac{{\sqrt{3}tan10°+1}}{{({4{{cos}^2}10°-2})sin10°}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求值:
(1)sin795°;         
(2)(tan10°-$\sqrt{3}$)•$\frac{{sin{{80}°}}}{{cos{{40}°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)在(0,+∞)上单调递增,且f(2)=0,则不等式$\frac{f(-x)-f(x)}{2x}$≥0的解集为(  )
A.[-2,0)∪(0,2]B.[-2,0)∪[2,+∞)C.(-∞,2]∪(0,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

同步练习册答案