精英家教网 > 高中数学 > 题目详情
已知函数(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.
【答案】分析:(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可,再根据直线l与函数f(x)、g(x)的图象都相切建立等量关系,即可求出a的值;
(2)先令y1=f(1+x2)-g(x)求出y1’=0的值,再讨论满足y1’=0的点附近的导数的符号的变化情况,来确定极值,由函数y1在R上各区间上的增减及极值情况,可得方程f(1+x2)-g(x)=k的解的个数.
解答:解:(1)f′(x)=,f′(1)=1,故直线l的斜率为1,
切点为(1,f(1)),即(1,0)∴l:y=x-1 ①
又∵g′(x)=x∴g′(1)=1,切点为(1,+a)
∴l:y-(+a)=x-1,即y=x-+a ②
比较①和②的系数得-+a=-1,∴a=-. (6分)
(2)由f(1+x2)-g(x)=k,即
设y1=ln(1+x2)-
令y'1=1,解得x=0,-1,1.

由函数y1在R上各区间上的增减及极值情况,可得
(1)当时有两个解;
(2)当时有3个解;
(3)当时有4个解
(4)当k=ln2时有2个解;
(5)当k>ln2时无解.(13分)
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的极值和方程解的个数,同时考查了函数与方程、分类讨论的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2012年宁夏高考数学仿真模拟试卷3(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区曹杨二中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数(a为常数)的图象经过点(1,3).
(1)求实数a的值;
(2)写出函数f(x)在[a,a+1]上的单调区间,并求函数f(x)在[a,a+1]上的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖中地区示范高中高三联考数学试卷(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年青海省高一上学期期中考试数学试卷 题型:解答题

已知函数(a为常数)是R上的奇函数,函数

是区间[-1,1]上的减函数.

(1)求a的值;

(2)若上恒成立,求t的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010年贵州省遵义市高三考前最后一次模拟测试数学(理)试题 题型:解答题

(本小题满分12分)

已知函数其中a为常数,且

(Ⅰ)当时,求(e=2.718 28…)上的值域;

(Ⅱ)若对任意恒成立,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案