分析 令sinx=t,则t∈(0,1],故-t2+t+1+a=0在(0,1]上有解,再利用二次函数的性质,求得a的取值范围.
解答 解:关于x的方程cos2x+sinx+a=0在0<x≤$\frac{π}{2}$上有解,即关于x的方程1-sin2+sinx+a=0在0<x≤$\frac{π}{2}$上有解.
令sinx=t,则t∈(0,1],故-t2+t+1+a=0在(0,1]上有解,
∴△=1+4(1+a)≥0,t1+t2=1,t1•t2=-1-a∈[0,1],求得-$\frac{5}{4}$≤a≤-1,
故答案为:$[-\frac{5}{4},-1]$.
点评 本题主要考查正弦函数的定义域和值域,二次函数的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,m∥β,则α∥β | B. | 若m⊥α,n⊥α,则m∥n | C. | 若α⊥γ,β⊥γ,则α⊥β | D. | 若α⊥β,l?α,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,-2,-3) | B. | (-1,2,3) | C. | (1,2,-3) | D. | (-1,-2,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com