精英家教网 > 高中数学 > 题目详情

【题目】在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )
A.a=2b
B.b=2a
C.A=2B
D.B=2A

【答案】A
【解析】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,
可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,
由正弦定理可得:2b=a.
故选:A.
【考点精析】本题主要考查了两角和与差的正弦公式和正弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;正弦定理:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,则 ; ②若;③若,则; ④若,则,其中正确命题的序号是( )

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着业的迅速发展计算机也在迅速更新换代,平板电脑因使用和移动便捷以及时尚新潮性,而备受人们尤其是大学生的青睐,为了解大学生购买平板电脑进行学习的学习情况,某大学内进行了一次匿名调查,共收到1500份有效问卷.调查结果显示700名女学生中有300人,800名男生中有400人拥有平板电脑.

(Ⅰ)完成下列列联表:

(Ⅱ)分析是否有的把握认为购买平板电脑与性别有关?

附:独立性检验临界值表:

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的正方形,的中点,以为折痕把折起,使点到达点的位置,且.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

从中任取3球,恰有一个白球的概率是

从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为

其中所有正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(x+ ),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x= 对称
C.f(x+π)的一个零点为x=
D.f(x)在( ,π)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中),若函数的图象与轴的任意两个相邻交点间的距离为,且函数的图象过点

1)求的解析式;

2)求的单调增区间:

3)求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线通过点,且在点处的切线垂直于轴.

(1)用分别表示

(2)当取得最小值时,求函数的单调区间.

查看答案和解析>>

同步练习册答案