精英家教网 > 高中数学 > 题目详情

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:

从中任取3球,恰有一个白球的概率是

从中有放回的取球6次,每次任取一球,则取到红球次数的方差为

从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为

其中所有正确结论的序号是______

【答案】

【解析】分析:①所求概率为 ,计算即得结论;
②利用取到红球次数 可知其方差为通过每次取到红球的概率 可知所求概率为

详解:①从中任取3球,恰有一个白球的概率是,故正确;
②从中有放回的取球6次,每次任取一球,
取到红球次数,其方差为,故正确;
③从中有放回的取球3次,每次任取一球,每次取到红球的概率
∴至少有一次取到红球的概率为,故正确.
故答案为:①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中m的值;

2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);

3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.

分数段

[7080

[8090

[90100

[100110

[110120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信其中每天使用微信时间在一小时以内的有,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,那么使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表

青年人

中年人

总计

经常使用微信

不经常使用微信

总计

(2)由列联表中所得数据判断,是否有百分之的把握认为“经常使用微信与年龄有关”?

0.010

0.001

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,是半圆的直径,垂直于半圆所在的平面,点是圆周上不同于的任意一点,分别为的中点,则下列结论正确的是(  )

A.B.平面平面

C.所成的角为45°D.平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级共有800名学生参加2019年全国高中数学联赛江苏赛区初赛,为了解学生成绩,现随机抽取40名学生的成绩(单位:分),并列成如下表所示的频数分布表:

分组

频数

⑴试估计该年级成绩不低于90分的学生人数;

⑵成绩在的5名学生中有3名男生,2名女生,现从中选出2名学生参加访谈,求恰好选中一名男生一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 (λ∈R),且 =﹣4,则λ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |=1,| |=2,则| + |+| |的最小值是 , 最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

(1)在抽取的20个零件中,等级为5的恰有2个,求

(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

同步练习册答案