精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥中, 的中点, 的中点,且为正三角形.

(1)求证: 平面

(2)若,求点到平面的距离.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)根据正三角形三线合一,可得利用三角形中位线定理及空间直线夹角的定义可得由线面垂直的判定定理可得平面再由结合线面垂直的判定定理可得平面;(2)记点到平面的距离为则有分别求出的长,及面积,利用等积法可得答案.

试题解析:(1)证明:如图,∵为正三角形,且的中点,

.

又∵的中点, 的中点,

,∴.

又已知,

平面,∴.

又∵,

平面.

(2)解:法一:记点到平面的距离为,则有

,∴

,又,∴

中, ,又∵

,∴

即点到平面的距离为.

法二:∵平面平面且交线为,过,则平面 的长为点到平面的距离;

,∴,又,∴,∴.

,即点到平面的距离为.

【方法点晴】本题主要考查的是线面垂直、棱锥的体积公式以及“等积变换”的应用,属于中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)讨论的单调性;

(3)设过两点的直线的斜率为,其中为曲线上的任意两点,并且,若恒成立,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且 ,f(0)=0
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求证:方程f(x)=lnx至少有一根在区间(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某商业区周边有 两条公路,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与分别交于,要求与扇形弧相切,切点不在上.

(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;

(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知自变量xy满足则当3S5时,z3x2y的最大值的变化范围为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直线坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)直线的普通方程和曲线的参数方程;

(2)设点上, 处的切线与直线垂直,求的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是.

(1)求油罐被引爆的概率

(2)如果引爆或子弹打光则停止射击,设射击次数为,的分布列及.( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点. (Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足条件an+1=
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知对任意的n∈N+ , 都有an≠1,求证:an+3=an对任意的正整数n都成立;
(3)在(1)的条件下,求a2015

查看答案和解析>>

同步练习册答案