精英家教网 > 高中数学 > 题目详情
8.等差数列{an}中,a3=8,a7=20,若数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为$\frac{4}{25}$,则n的值为16.

分析 由等差数列通项公式列出方程组,求出a1=2,d=3,从而$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}-\frac{1}{3n+2}$),进而得到数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn=$\frac{1}{3}$($\frac{1}{2}-\frac{1}{3n+2}$),由此利用数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为$\frac{4}{25}$,能求出n的值.

解答 解:∵等差数列{an}中,a3=8,a7=20,
∴$\left\{\begin{array}{l}{{a}_{3}={a}_{1}+2d=8}\\{{a}_{7}={a}_{1}+6d=20}\end{array}\right.$,
解得a1=2,d=3,
∴an=2+(n-1)×3=3n-1,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}-\frac{1}{3n+2}$),
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为:
Sn=$\frac{1}{3}$($\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+…+\frac{1}{3n+1}-\frac{1}{3n+2}$)=$\frac{1}{3}$($\frac{1}{2}-\frac{1}{3n+2}$),
∵数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为$\frac{4}{25}$,∴$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$=$\frac{4}{25}$,
解得n=16.
故答案为:16.

点评 本题考查等差数列的项数n的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.运行如图的程序,输出的结果是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的必要条件,求实数m的取值范围
(2)若m=2,¬p∨¬q为假,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则S=2x+y+1的最大值为(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若关于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=4tanxsin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线l1:x+ay+3=0和直线l2:(a-2)x+3y+a=0互相平行,则a的值为(  )
A.-1或3B.-3或1C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线的焦点到渐近线的距离是焦距的$\frac{\sqrt{5}}{5}$,则该双曲线的离心率为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案