精英家教网 > 高中数学 > 题目详情

在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。求:

(1)取两次就结束的概率;

(2)正好取到2个白球的概率.

 

【答案】

(1)(2)

【解析】

试题分析:(1)取两次的概率   5分

答: 取两次的概率为      6分

(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况, 7分

所以恰有两次取到白球的概率为

.       11分

答: 恰有两次取到白球的概率为       .12分

考点:相互独立事件同时发生的概率

点评:求解本题先要将所求的事件与每次取球的结果对应起来,进而转化为相互独立事件同时发生的概率,利用公式计算

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次.求:
(1)取两次就结束的概率;
(2)正好取到2个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.求:
(1)最多取两次就结束的概率;
(2)整个过程中恰好取到2个白球的概率;
(3)取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在盒子里有大小相同仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取一球确定颜色后再放回盒子里,最多取3次.若取出的是蓝球,则不再取球.
(1)求最多取两次就结束取球的概率;
(2)(理科)求取球次数的分布列和数学期望; (文科)求正好取到两次白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区二模)在盒子里有大小相同,仅颜色不同的小球共10个,其中白球5 个,红球3个,黄球2个.现从中任取出一球确定颜色后再放回盒子里,最多取3次,取出黄球则不再取球.求:
(Ⅰ)最多取两次就结束的概率;
(Ⅱ)若取到3次,正好取到2个红球的概率;
(Ⅲ)取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•崇文区二模)在盒子里有大小相同,仅颜色不同的小球共10个,其中白球5个,红球3个,黄球2个.现从中任取出一球确定颜色后再放回盒子里,最多取3次,取出黄球则不再取球.求:
(Ⅰ)最多取两次就结束的概率;
(Ⅱ)若取到3次,正好取到2个红球的概率.

查看答案和解析>>

同步练习册答案