精英家教网 > 高中数学 > 题目详情
1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,又$\overrightarrow{OC}=2\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{OD}=\overrightarrow{a}+3\overrightarrow{b}$.求|$\overrightarrow{CD}$|的值.

分析 根据平面向量数量积的定义,利用模长公式,即可求出对应的结果.

解答 解:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
又$\overrightarrow{OC}=2\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{OD}=\overrightarrow{a}+3\overrightarrow{b}$,
∴$\overrightarrow{CD}$=$\overrightarrow{OD}$-$\overrightarrow{OC}$=-$\overrightarrow{a}$+2$\overrightarrow{b}$,
∴${\overrightarrow{CD}}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$$•\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$
=12-4×1×2×cos60°+4×22
=13.
∴|$\overrightarrow{CD}$|=$\sqrt{13}$.

点评 本题考查了平面向量数量积的运算与模长公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知点M是抛物线x2=4y上的一动点,F为抛物线的焦点,A是圆C:(x-1)2+(y-4)2=1上一动点,则|MA|+|MF|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若菱形ABCD的边长为2,则|$\overrightarrow{AB}$-$\overrightarrow{AD}$+$\overrightarrow{CD}$|=(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x0>0,x02-4x0+1<0”的否定是?x>0,x2-4x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若经过A(a,-1),B(2,3)的直线的斜率为2,则a等于(  )
A.0B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求数列$\frac{2}{1×2}$,$\frac{2}{2×3}$,$\frac{2}{3×4}$,$\frac{2}{4×5}$,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如表提供了某厂节能降耗技术改造后,在生产A产品过程中记录的产量x(吨)与相应生产能耗y(吨)的几组对应数据:
x3456
y2.5344.5
(1)根据上表提供的数据,求出y关于x的线性回归方程;
(2)试估计产量为10吨时,相应的生产能耗.
参考公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.动物园要建造一个长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成.
(1)现有可围36m长网的材料,当虎笼的长、宽各设计为多少时,可使虎笼面积最大?最大面积为多少?
(2)若使虎笼的面积为32m2,则虎笼的长、宽各设计为多少时,可使围成虎笼所用的钢筋网总长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,tanα=-$\frac{3}{4}$,cos(β-α)=$\frac{5}{13}$,则sinβ的值为$\frac{63}{65}$.

查看答案和解析>>

同步练习册答案