精英家教网 > 高中数学 > 题目详情
在各项为正的数列{an}中,数列的前n项和Sn满足Sn=
1
2
(an+
1
an
)

(1)求出a1,a2,a3的值.
(2)由(1)猜想数列{an}的通项公式,并证明你的结论.
考点:数学归纳法,数列递推式
专题:计算题,点列、递归数列与数学归纳法
分析:(1)由Sn=
1
2
(an+
1
an
)
,代入n=1,2,计算,可求a1,a2,a3的值;
(2)猜想{an}的通项公式,再用数学归纳法证明,关键是假设当n=k(k≥1)时,命题成立,即成立,利用递推式,证明当n=k+1时,等式成立.
解答: 解:(1)S1=a1=
1
2
(a1+
1
a1
)
,得
a
2
1
=1
,由an>0,∴a1=1.(1分)
S2=a1+a2=
1
2
(a2+
1
a2
)
,得
a
2
2
+2a2-1=0
,∴a2=
2
-1
,(3分)
同理,求得a3=
3
-
2
.(5分)
(2)猜想an=
n
-
n-1
(n∈N*)
.(6分)
①n=1时,a1=
1
-
0
命题成立.(7分)
②假设n=k时,ak=
k
-
k-1
(k∈N*)
(*)成立,
则n=k+1时,ak+1=Sk+1-Sk=
1
2
(ak+1+
1
ak+1
)-
1
2
(ak+
1
ak
)

把 (*)代入上式,化简得,ak+12+2
k
ak+1-1=0

ak+1=
k+1
-
k
(负舍),即n=k+1时,命题成立.
由①②得,an=
n
-
n-1
(n∈N*)
.(14分)
点评:本题考查数列的通项,考查归纳猜想,考查数学归纳法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
ax2+1
bx
(a,b∈Z),满足f(1)=2,f(2)=3.
(1)求ab的值;
(2)当x<0时,判断f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)2ex,g(x)=x3-x2-3,其中a∈R.
(1)当a=0时,求曲线y=f(x)在点P(1,f(1))处的切线方程;
(2)若存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求实数M的最大值;
(3)若对任意的s,t∈[0,2],都有f(s)≥g(t),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两块直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.
(1)若记
AB
=
a
AC
=
b
,试用
a
b
表示向量
AD
CD

(2)若AB=
2
,求
AD
AB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2+x+a,g(x)=2a-x3(x∈R,a∈R).
(1)求函数f(x)的单调区间.
(2)求函数f(x)的极值.
(3)若任意x∈[0,1],不等式g(x)≥f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=|x-3|,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知α的终边所在直线上的一点P的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q的纵坐标为
2
10

(1)求tan(α-β)的值;
(2)若
π
2
<α<π,0<β<
π
2
,求α+β.

查看答案和解析>>

科目:高中数学 来源: 题型:

若两条平行直线分别在两个相交平面内,证明:这两条直线都与两平面的交线平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围.

查看答案和解析>>

同步练习册答案