精英家教网 > 高中数学 > 题目详情
如图,两块直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°.
(1)若记
AB
=
a
AC
=
b
,试用
a
b
表示向量
AD
CD

(2)若AB=
2
,求
AD
AB
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)利用向量的三角形法则、共线定理即可得出.
(2)利用数量积的定义及其运算性质即可得出.
解答: 解:(1)
CB
=
a
-
b

∵AC∥BD,BD=
3
BC=
3
BD.
BD
=
3
b

AD
=
AB
+
BD
=
a
+
3
b
CD
=
AD
-
AC
=
a
+(
3
-1)
b

(2)∵
a
b
=
2
cos45°
=1.
AD
AB
=(
a
+
3
b
)•
a
=
a
2
+
3
a•
b
=2+
3
点评:本题考查了向量的三角形法则、共线定理、数量积的定义及其运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
2x+1
x-3
的值域是(  )
A、(-∞,3)∪(3,+∞)
B、(-∞,2)∪(2,+∞)
C、R
D、(-∞,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点P(1,6),且分别满足下列条件的直线方程:
(1)与直线x-3y+4=0垂直;
(2)与圆(x+2)2+(y-2)2=25相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的2×2列联表:
性别与看营养说明2×2列联表    单位:名
总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为5的样本,再从这5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;
(2)根据以上2×2列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
统计量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d).
概率表
p(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A1B1C1D1中,AA1=2,E是DD1的中点,
(1)求证:BD1∥平面ACE
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx),函数f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期及单调增区间;
(2)当0≤x≤
π
2
时,求x为何值时函数f(x)分别取最大最小值并求出最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项为正的数列{an}中,数列的前n项和Sn满足Sn=
1
2
(an+
1
an
)

(1)求出a1,a2,a3的值.
(2)由(1)猜想数列{an}的通项公式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是二次函数且f(0)=-1,f(x+1)-f(x)=2x+2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-1≤x≤0,求函数y=2x+1-3•4x的最大值和最小值.

查看答案和解析>>

同步练习册答案