精英家教网 > 高中数学 > 题目详情
4.已知函数f (x)=$\frac{1}{x{\;}^{2}-1}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在(1,+∞)上的单调性,并加以证明.

分析 (1)解x2-1≠0得f(x)的定义域;
(2)函数f(x)在(1,+∞)上为减函数
证法一:求导,分析导函数在(1,+∞)上的符号,可得结论;
证法二:任取a,b∈(1,+∞),且a<b,作差比较f(a)与f(b)的大小,结合单调性的定义,可得结论;

解答 解:(1)由x2-1≠0得:x≠±1,
故函数f (x)=$\frac{1}{x{\;}^{2}-1}$的定义域为:{x|x≠±1} 
(2)函数f(x)在(1,+∞)上为减函数,理由如下:
证法一:∵f (x)=$\frac{1}{x{\;}^{2}-1}$.
∴f′(x)=$\frac{-2x}{({x}^{2}-1)^{2}}$.
当x∈(1,+∞)时,f′(x)<0恒成立,
故函数f(x)在(1,+∞)上为减函数;
证法二:任取a,b∈(1,+∞),且a<b,
则a2-1>0,b2-1>0,b+a>0,b-a>0,
则f(a)-f(b)=$\frac{1}{{a}^{2}-1}$-$\frac{1}{{b}^{2}-1}$=$\frac{{(b}^{2}-1)-{(a}^{2}-1)}{{(a}^{2}-1){(b}^{2}-1)}$=$\frac{{(b}^{\;}-a)•(b+a)}{{(a}^{2}-1){(b}^{2}-1)}$>0,
故f(a)>f(b),
故函数f(x)在(1,+∞)上为减函数;

点评 本题考查的知识点是函数的单调性,函数的定义域,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知平面α∥平面β,点A,B∈α,点C,D∈β,且AC∥BD,求证:AC=BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),直线l经过定点P(1,1),倾斜角为$\frac{π}{3}$.
(Ⅰ)写出直线l的参数方程和圆锥曲线C的标准方程;
(Ⅱ)设直线l与圆锥曲线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{x}{{e}^{x}}$+x2-x(其中e=2.71828…).
(1)求f(x)在(1,f(1))处的切线方程;
(2)若函数g(x)=ln[f(x)-x2+x]-b的两个零点为x1,x2,证明:g′(x1)+g′(x2)>g′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(2x-1)的定义域为(-1,1],则函数f(log${\;}_{\frac{1}{2}}}$x)的定义域为[$\frac{1}{2}$,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=$\frac{[x-m]}{x-m}$,其中m∈N*,则给出以下四个结论其中正确是(  )
A.函数f(x)在(m+1,+∞)上的值域为$(\frac{1}{2},1]$B.函数f(x)的图象关于直线x=m对称
C.函数f(x)在(m,+∞)是减函数D.函数f(x)在(m+1,+∞)上的最小值为$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>0,b>0且2a+b=1,若不等式$\frac{2}{a}$+$\frac{1}{b}$≥m恒成立,则m的最大值等于(  )
A.10B.9C.8D.7

查看答案和解析>>

同步练习册答案