精英家教网 > 高中数学 > 题目详情
2.在下列各图中,相关关系最强的是(  )
A.B.C.D.

分析 根据在散点图中,样本点成带状分布这两个变量具有较强的线性相关关系,由此判断即可.

解答 解:对于A,图中各点成带状分布,这组变量具有较强的线性相关关系;
对于B、C、D,图中所示的散点图中,样本点成片状分布,
组中两个变量的线性相关关系相对较弱些.
故选:A.

点评 本题考查了散点图与线性相关关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的2×2列联表:
爱好不爱好合计
203050
102030
合计305080
(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为X,求X的分布列和数学期望;
(Ⅱ)根据表中数据,能否认为爱好羽毛球运动与性别有关?
P(x2≥k)0.0500.010
   k3.8416.635
附:x2=$\frac{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}{{n}_{1+}•{n}_{2+}•{n}_{+1}•{n}_{+2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知A(1,1),B(3,4),C(2,0),向量$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为θ,则tan2θ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Sn为数列{an}的前n项和,且Sn=3n+1,则数列{an2}的前n项和Tn=$\frac{{9}^{n}+23}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要得到函数y=$\frac{\sqrt{3}}{2}$sin2x+cos2x-$\frac{1}{2}$的图象,只需将y=sinx图象上所有的点(  )
A.横坐标变为原来的一半,纵坐标不变,再向左平移$\frac{π}{6}$个单位
B.横坐标变为原来的两倍,纵坐标不变,再向左平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{12}$个单位,再将所得各点的横坐标变为原来的两倍,纵坐标不变
D.向左平移$\frac{π}{6}$个单位,再将所得各点的横坐标变为原来的一半,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,则该几何体的体积为$\frac{1}{3}$,表面积为$\frac{3}{2}+\frac{\sqrt{3}}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义在D上的函数f(x),若满足:?x∈D,?M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
(I)设$f(x)=\frac{x}{x+1}$,证明:f(x)在$[{-\frac{1}{2},\frac{1}{2}}]$上是有界函数,并写出f(x)所有上界的值的集合;
(II)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等差数列{an}中,a1+a7+a13=π,则cos(a2+a12)的值=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若α,β均是锐角,且α<β,已知cos(α+β)=$\frac{3}{5}$,sin(α-β)=-$\frac{12}{13}$,则sin2α=(  )
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{56}{65}$或$\frac{16}{65}$D.$\frac{56}{65}$或$-\frac{16}{65}$

查看答案和解析>>

同步练习册答案