精英家教网 > 高中数学 > 题目详情

在实数集R上的函数f(x)如果满足:对任意x1,x2∈R,都有,则称f(x)为R上的凹函数.已知二次函数f(x)=ax2+x(a∈R且a≠0),(1)求证:a>0时,函数f(x)为凹函数;(2)如果x∈(0,1]时,|f(x)|≤1恒成立,试求实数a的取值范围.

答案:
解析:

  (1)证明:

  ,有

  

  

  故函数为R上的凹函数

  (2)恒成立,

  恒成立.

  时恒成立.

  时取得最小值0,,故


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数)使得f(x)≥g(x)对任意的x∈R都成立,则称
g(x)为函数f(x)的一个承托函数.以下说法
(1)函数f(x)=x2-2x不存在承托函数;
(2)函数f(x)=x3-3x不存在承托函数;
(3)函数f(x)=
2x
x2-x+1
不存在承托函数;
(4)g(x)=1为函数f(x)=x4-2x3+x2+1的一个承托函数;
(5)g(x)=x为函数f(x)=ex-1的一个承托函数.
中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.
下列说法正确的有:
①②
①②
.(写出所有正确说法的序号)
①对给定的函数f(x),其承托函数可能不存在,也可能有无数个;
②g(x)=ex为函数f(x)=ex的一个承托函数;
③函数f(x)=
x
x2+x+1
不存在承托函数;
④函数f(x)=
1
5x2-4x+11
,若函数g(x)的图象恰为f(x)在点p(1,
1
2
)
处的切线,则g(x)为函数f(x)的一个承托函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)满足f(x)•f(x+2)=6,若f(3)=2,则f(2013)的值为
3
3

查看答案和解析>>

同步练习册答案