精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.

(Ⅰ)若E为AD的中点,试在线段CD上找一点F,使 EF∥平面ABC,并加以证明;
(Ⅱ)求证:BC⊥平面ACD;
(Ⅲ)求几何体A-BCD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的判定
专题:计算题,证明题,空间位置关系与距离
分析:(1)取DC的中点F,则F就是要确定的点,(2)由勾股定理证明BC⊥AC;(3)VA-BCD=VB-ACD
解答: 解:(Ⅰ)取DC的中点F,则F就是要确定的点,证明如下:
∵E为AD的中点,F是DC的中点,
∴EF∥AC,又EF在平面ABC外,AC在平面ABC内,
∴EF∥平面ABC.
(Ⅱ)证明:∵在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.
∴AC=
22+22
=2
2
,BC=
22+(4-2)2
=2
2

∴AC2+BC2=16=AB2
∴BC⊥AC,又∵平面ADC⊥平面ABC,
∴BC⊥平面ACD;
(Ⅲ)VA-BCD=VB-ACD=
1
3
×(
1
2
×2×2)×2
2
=
4
2
3
点评:本题考查了学生的空间想象力及作图能力,线面平行的判定定理及勾股定理.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x+y=1(x,y>0),则
1
x
+
1
y
的最小值是(  )
A、1
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在棱长为1的正方体ABCD-A1B1C1D1中,点E为棱BC的中点,点F是棱CD上的动点.
(1)试确定F点的位置,使得D1E⊥平面AB1F;
(2)当D1E⊥平面AB1F时,求二面角C1-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
tan(2x+
π
3
)

(1)求f(x)的定义域与最小正周期;
(2)设α∈(-
π
6
π
12
)∪(
π
12
π
3
).若f(
α
2
)=sin(2α+
3
),求角α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<α<
π
2
,cos(α+
π
6
)=-
5
13
,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|a-
1
x
|,a>0,b>0,x≠0,且满足:函数y=f(x)的图象与直线y=1有且只有一个交点.
(1)求实数a的值;
(2)若关于x的不等式f(x)<4x-1的解集为(
1
2
,+∞),求实数b的值;
(3)在(2)成立的条件下,是否存在m,n∈R,m<n,使得f(x)的定义域和值域均为[m,n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
4
x

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;
(Ⅱ)若
x+4
x-a
>0对任意x∈[4,5]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上是奇函数,x>0时,f(x)=x-2.作出y=f(x)的图象并写出f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|x2-3x-1|>3.

查看答案和解析>>

同步练习册答案