精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
4
x

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;
(Ⅱ)若
x+4
x-a
>0对任意x∈[4,5]恒成立,求实数a的取值范围.
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:(Ⅰ)任取x1,x2∈[2,+∞),且x1<x2,通过作差比较f(x1)与f(x2)的大小,根据增函数的定义,只需说明f(x1)<f(x2)即可;
(Ⅱ)若
x+4
x-a
>0对任意x∈[4,5]恒成立,则a<x对任意x∈[4,5]恒成立,即可求实数a的取值范围.
解答: (Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2
则f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=
(x1-x2)(x1x2-4)
x1x2

∵2≤x1<x2,所以x1-x2<0,x1x2>4,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)=x+
4
x
在[2,+∞)上为增函数;
(Ⅱ)解:∵
x+4
x-a
>0对任意x∈[4,5]恒成立,
∴x-a>0对任意x∈[4,5]恒成立,
∴a<x对任意x∈[4,5]恒成立,
∴a<4.
点评:本题考查函数单调性的证明,考查恒成立问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若
x-1
x-2
≤0,则(x-1)(x-2)≤0;
③“若M>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中为真命题的是(  )
A、②③B、②③④
C、③④D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
总计
需要403070
不需要160270430
总计200300500
P(K2≥K)0.100.0500.0100.001
k2.7063.8416.63510.828
(1)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.
(2)依据(1)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.

(Ⅰ)若E为AD的中点,试在线段CD上找一点F,使 EF∥平面ABC,并加以证明;
(Ⅱ)求证:BC⊥平面ACD;
(Ⅲ)求几何体A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个非零向量
a
b
不共线.
(1)
AB
=
a
+
b
BC
=2
a
+8
b
CD
=3(
a
-
b
),A,B,D三点是否能构成三角形,并说明理由.
(2)试确定实数k,使k
a
+
b
a
+k
b
共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2=4外一点P(2,1)引圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=x+
1
x
的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简下列各式:
(1)a 
1
2
a 
1
4
a -
3
8
;              
(2)(x 
1
2
y -
1
3
6       
(3)(x 
3
2
y)2÷(xy 
2
3

(4)(2a 
1
2
+3b -
1
4
)(2a 
1
2
-3b -
1
4
)                      
(5)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前项和为n,已知S1=1,
Sn+1
Sn
=
n+c
n
(为常数,c≠1,n∈N*),且a1,a2,a3成等差数列.
(1)求的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}是首项为1,公比为的等比数列,记An=a1b1+a2b2+a3b3+…+anbn,Bn=a1b1+a2b2+a3b3+…+(-1)n-1anbn,n∈N*.求证:A2n+3B2n≤-4,(n∈N*).

查看答案和解析>>

同步练习册答案