精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的前n项和为Sn,且Sn=2an-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n+1}{{a}_{n}}$,求数列{bn}前n项和Tn

分析 (I)Sn=2an-2,可得n≥2时,an=Sn-Sn-1,化为:an=2an-1.n=1时,a1=2a1-2,解得a1.利用等比数列的通项公式即可得出.
(II)bn=$\frac{n+1}{{a}_{n}}$=$\frac{n+1}{{2}^{n}}$,利用错位相减法与等比数列的求和公式即可得出.

解答 解:(I)∵Sn=2an-2,∴n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为:an=2an-1
n=1时,a1=2a1-2,解得a1=2.
∴数列{an}是等比数列,首项与公比都为2.
∴an=2n
(II)bn=$\frac{n+1}{{a}_{n}}$=$\frac{n+1}{{2}^{n}}$,
∴数列{bn}前n项和Tn=$\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n+1}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=1+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$=1+$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{n+1}{{2}^{n+1}}$.
∴Tn=3-$\frac{n+3}{{2}^{n}}$.

点评 本题考查了错位相减法、等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知tanα=$\frac{1}{3}$,则cos2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,若z(1+i)=1+3i,则$\overline z$=(  )
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$与$\overrightarrow b$满足$|{\overrightarrow a}|=2|{\overrightarrow b}|$,若向量$\overrightarrow c=\overrightarrow a+\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2xex
(1)过点(-4,0)作曲线y=f(x)的切线l,求切线l的方程;
(2)若实数a满足(a-1)(ea-1)>0,求证:对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四棱锥的正视图与俯视图如图所示,该四棱锥的体积为24,则四棱锥的侧视图面积为6,四棱锥的表面积为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数$f(x)=\sqrt{lnx+x+m}$,若曲线$y=\frac{1-e}{2}cosx+\frac{1+e}{2}$上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为(  )
A.[0,e2-e+1]B.[0,e2+e-1]C.[0,e2+e+1]D.[0,e2-e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.
(1)设$e=\frac{1}{2}$,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=(x-4)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a9)=27,则f(a5)的值为(  )
A.0B.1C.3D.5

查看答案和解析>>

同步练习册答案