精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2xex
(1)过点(-4,0)作曲线y=f(x)的切线l,求切线l的方程;
(2)若实数a满足(a-1)(ea-1)>0,求证:对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

分析 (1)根据题意设切线l的方程为y=k(x+4),切点为(x0,f(x0)),利用导数的几何意义和斜率公式即可求出切点,问题得以解决,
(2)先求出a的范围,再构造函数g(x)=f(x)-a(e2x-1),利用导数求出函数的最值,即可证明.

解答 解:(1)根据题意设切线l的方程为y=k(x+4),切点为(x0,f(x0)),
则k=f′(x),
∵f′(x)=2ex(x+1),
∴$\frac{f({x}_{0})-0}{{x}_{0}+4}$=$\frac{2{x}_{0}{e}^{{x}_{0}}}{{x}_{0}+4}$=f′(x0)=2${e}^{{x}_{0}}$(x0+1),
∴x02+4x0+4=0,
解得x0=-2,
∴k=-$\frac{2}{{e}^{2}}$,
∴切线l的方程为y=-$\frac{2}{{e}^{2}}$(x+4),
(2)证明:由题意(a-1)(ea-1)>0,解得a>1或a<0,
设g(x)=f(x)-a(e2x-1),
∴g′(x)=2ex(x+1-aex),
当a>1时,g′(x)=2ex(x+1-aex),
令h(x)=x+1-aex
∴h′(x)=1-aex<0恒成立,
∴h(x)在(0,+∞)单调递减,
∴h(x)<h(0)=0,
∴g′(x)=2ex(x+1-aex)<0,
∴g(x)在(0,+∞)单调递减,
∴g(x)<g(0)=0,
∴ag(x)<0恒成立,
当a<0时,g′(x)=2ex(x+1-aex)>0,
∴g(x)在(0,+∞)单调递增,
∴g(x)>g(0)=0,
∴ag(x)<0恒成立,
综上所述对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

点评 本题考查了导数的几何意义和利用导数研究函数的单调性最值、恒成立问题的等价转化方法,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,在四边形ABCD中,∠B=$\frac{π}{3}$,∠BCA=2∠CAD,CD=2$\sqrt{2}$,AD=AC=4,则AB=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=alnx-x2在区间(0,1)内任取两个不相等的实数p、q,不等式$\frac{f(p)-f(q)}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.(3,5)B.(-∞,0)C.(3,5]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中,a1=1,a2=3,an+2=3an+1-2an,n∈N*
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)设bn=4log2(an+1)+3,${c_n}=\frac{2^n}{{{a_n}•{a_{n+1}}}}$,求数列{(-1)nbnbn+1+cn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=(\sqrt{3}sin2x-1,cosx)$,$\overrightarrow n=(1,-2cosx)$,$f(x)=\overrightarrow m•\overrightarrow n$,x∈R.
(1)求f(x)的单调增区间及对称中心;
(2)△ABC的内角A,B,C所对的边分别为a,b,c,若f(A)=0,b=1,△ABC的面积为$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n+1}{{a}_{n}}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O1和圆O2都经过点A(0,1),若两圆与直线4x-3y+5=0及y+1=0均相切,则|O1O2|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.$\int{\begin{array}{l}{\frac{π}{4}}\\ 0\end{array}}({sinx-acosx})dx=-\frac{{\sqrt{2}}}{2}$,则实数a等于(  )
A.1B.$\sqrt{2}$C.-1D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|x2-2x-8>0},B={1,5},则集合(∁UA)∩B为(  )
A.{x|1<x<5}B.{x|x>5}C.{1}D.{1,5}

查看答案和解析>>

同步练习册答案