精英家教网 > 高中数学 > 题目详情
15.已知f(x)=alnx-x2在区间(0,1)内任取两个不相等的实数p、q,不等式$\frac{f(p)-f(q)}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.(3,5)B.(-∞,0)C.(3,5]D.[3,+∞)

分析 由不等式进行转化,然后判断函数的单调性,求函数的导数,利用参数分离法进行求解即可.

解答 解:∵p≠q,不妨设p>q,由于$\frac{f(p)-f(q)}{p-q}>1$,
∴f(p)-f(q)>p-q,得[f(p)-p]-[f(q)-q]>0,
∵p>q,∴g(x)=f(x)-x在(0,1)内是增函数,
∴g'(x)>0在(0,1)内恒成立,即$\frac{a}{x}-2x-1$>0恒成立,
a>x(2x+1)的最大值,
∵x∈(0,1)时x(2x+1)<3,
∴实数a的取值范围为[3,+∞).
故选:D.

点评 本题主要考查不等式恒成立问题,根据不等式进行转化判断函数的单调性,分离参数是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某班在高三凉山二诊考试后,对考生的数学成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].得到频率分布直方图如图所示.若第四、五、六组的人数依次成等差数列,且第六组有2人.
(1)请补充完整频率分布直方图;

(2)现从该班成绩在[130,150]的学生中任选三人参加省数学竞赛,记随机变量x表示成绩在[130,140)的人数,求x的分布列和E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2016年巴西里约奥运会期间,6名游泳队员从左至右排成一排合影留念,最左边只能排甲或乙,最右端不能排甲,则不同的排法种数为(  )
A.216B.108C.432D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=lgxB.y=cosxC.y=|x|D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲,乙,丙三地实施人工降雨,其实验统计结果如下
方式实施地点大雨中雨小雨模拟实验次数
A2次6次4次12次
B3次6次3次12次
C2次2次8次12次
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:
(Ⅰ)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨即达到理想状态,乙地必须是大雨才达到理想状态,记“甲,乙,丙三地中缓解旱情的个数”为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,若z(1+i)=1+3i,则$\overline z$=(  )
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,$\overrightarrow{DM}=2\overrightarrow{MB}$,则$\overrightarrow{AC}•\overrightarrow{AM}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2xex
(1)过点(-4,0)作曲线y=f(x)的切线l,求切线l的方程;
(2)若实数a满足(a-1)(ea-1)>0,求证:对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=$\sqrt{2}$AP,延长OP交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案