精英家教网 > 高中数学 > 题目详情
6.在2016年巴西里约奥运会期间,6名游泳队员从左至右排成一排合影留念,最左边只能排甲或乙,最右端不能排甲,则不同的排法种数为(  )
A.216B.108C.432D.120

分析 根据题意,分2种情况讨论:①、最左边排甲,①、最左边排乙,分别求出每一种情况的安排方法数目,由分类计数原理计算可得答案.

解答 解:根据题意,最左边只能排甲或乙,则分2种情况讨论:
①、最左边排甲,则先在剩余5个位置选一个安排乙,乙有5种情况,
再将剩余的4个人全排列,安排在其余4个位置,有A44=24种安排方法,
此时有5×24=120种情况,
①、最左边排乙,由于最右端不能排甲,则甲有4个位置可选,有4种情况,
再将剩余的4个人全排列,安排在其余4个位置,有A44=24种安排方法,
此时有4×24=96种情况,
则不同的排法种数为120+96=216种;
故选:A.

点评 本题考查排列、组合的实际应用,注意要先分析特殊元素,由本题的甲、乙.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:
X123567
y605553464541
(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线l:x+λy+2-3λ=0(λ∈R)恒过定点(-2,3),P(1,1)到该直线的距离最大值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在四边形ABCD中,∠B=$\frac{π}{3}$,∠BCA=2∠CAD,CD=2$\sqrt{2}$,AD=AC=4,则AB=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},则A∪B=(  )
A.[0,1)B.(-1,2)C.(-1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|x2-1<0},B={x|y=ln(x-1)},则A∪B=(  )
A.(-1,1)B.(-1,+∞)C.(-1,1)∪(1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在面积为S的三角形ABC的边AB上任意取一点P,则三角形PBC的面积大于$\frac{S}{4}$的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=alnx-x2在区间(0,1)内任取两个不相等的实数p、q,不等式$\frac{f(p)-f(q)}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.(3,5)B.(-∞,0)C.(3,5]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O1和圆O2都经过点A(0,1),若两圆与直线4x-3y+5=0及y+1=0均相切,则|O1O2|=$\sqrt{5}$.

查看答案和解析>>

同步练习册答案