精英家教网 > 高中数学 > 题目详情
14.如图,在四边形ABCD中,∠B=$\frac{π}{3}$,∠BCA=2∠CAD,CD=2$\sqrt{2}$,AD=AC=4,则AB=$\sqrt{21}$.

分析 设∠CAD=θ,则∠BCA=2θ,根据余弦定理求出cosθ,再根据同角的三角函数的关系和二倍角公式求出sin2θ,再由正弦定理即可求出.

解答 解:设∠CAD=θ,则∠BCA=2θ
在△ADC中,由余弦定理可得cosθ=$\frac{A{D}^{2}+A{C}^{2}-C{D}^{2}}{2AD•AC}$=$\frac{16+16-8}{2×4×4}$=$\frac{3}{4}$,
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{7}}{4}$,
∴sin2θ=2sinθcosθ=2×$\frac{\sqrt{7}}{4}$×$\frac{3}{4}$=$\frac{3\sqrt{7}}{8}$,
在△ABC中,由正弦定理可得$\frac{AC}{sinB}$=$\frac{AB}{sin2θ}$,
∴AB=$\frac{4×\frac{3\sqrt{7}}{8}}{\frac{\sqrt{3}}{2}}$=$\sqrt{21}$,
故答案为:$\sqrt{21}$.

点评 本题考查了正弦定理和余弦定理和同角的三角函数的关系和二倍角公式,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到
△PAD的位置,得到四棱锥P-ABCD.点M为线段PC的中点,且BM⊥平面PCD.

(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)若四棱锥P-ABCD的体积为2$\sqrt{3}$,求四面体BCDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某班在高三凉山二诊考试后,对考生的数学成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].得到频率分布直方图如图所示.若第四、五、六组的人数依次成等差数列,且第六组有2人.
(1)请补充完整频率分布直方图;

(2)现从该班成绩在[130,150]的学生中任选三人参加省数学竞赛,记随机变量x表示成绩在[130,140)的人数,求x的分布列和E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-x3,g(x)=ex-1(e为自然对数的底数).
(1)求证:当x≥0时,g(x)≥x+$\frac{1}{2}$x2
(2)记使得kf(x)≤g(x)在区间[0,1]恒成立的最大实数k为n0,求证:n0∈[4,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设变量x,y满足约束条件$\left\{\begin{array}{l}x-2y+1≤0\\ x+y-5≤0\\ 4x-2y+1≥0\end{array}\right.$,若目标函数z=mx-y取得最大值的最优解有无数个,则m=(  )
A.$\frac{1}{2}$B.-1C.2D.$-1或\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知tanα=$\frac{1}{3}$,则cos2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2016年巴西里约奥运会期间,6名游泳队员从左至右排成一排合影留念,最左边只能排甲或乙,最右端不能排甲,则不同的排法种数为(  )
A.216B.108C.432D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是偶函数又在(0,+∞)上单调递增的是(  )
A.y=lgxB.y=cosxC.y=|x|D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2xex
(1)过点(-4,0)作曲线y=f(x)的切线l,求切线l的方程;
(2)若实数a满足(a-1)(ea-1)>0,求证:对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

查看答案和解析>>

同步练习册答案