精英家教网 > 高中数学 > 题目详情
14.已知圆O1和圆O2都经过点A(0,1),若两圆与直线4x-3y+5=0及y+1=0均相切,则|O1O2|=$\sqrt{5}$.

分析 由题意画出图形,可得两圆中一个圆的圆心在坐标原点,由已知列式求出另一圆心坐标,则答案可求.

解答 解:如图,∵原点O到直线4x-3y+5=0的距离d=$\frac{|5|}{\sqrt{{4}^{2}+(-3)^{2}}}=1$,到直线y=-1的距离为1,且到(0,1)的距离为1,
∴圆O1和圆O2的一个圆心为原点O,不妨看作是圆O1
设O2(a,b),则由题意:
$\left\{\begin{array}{l}{b+1=\sqrt{{a}^{2}+(b-1)^{2}}}\\{b+1=\frac{|4a-3b+5|}{\sqrt{{4}^{2}+(-3)^{2}}}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=1}\end{array}\right.$.
∴$|{O}_{1}{O}_{2}|=\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查直线与圆、圆与圆位置关系的应用,考查数形结合的解题思想方法,训练了点到直线距离公式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在2016年巴西里约奥运会期间,6名游泳队员从左至右排成一排合影留念,最左边只能排甲或乙,最右端不能排甲,则不同的排法种数为(  )
A.216B.108C.432D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,平行四边形ABCD中,AB=2,AD=1,∠DAB=60°,$\overrightarrow{DM}=2\overrightarrow{MB}$,则$\overrightarrow{AC}•\overrightarrow{AM}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2xex
(1)过点(-4,0)作曲线y=f(x)的切线l,求切线l的方程;
(2)若实数a满足(a-1)(ea-1)>0,求证:对任意x∈(0,+∞),a[f(x)-a(e2x-1)]<0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若实数x,y满足2x-3≤ln(x+y+1)+ln(x-y-2),则xy=-$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数$f(x)=\sqrt{lnx+x+m}$,若曲线$y=\frac{1-e}{2}cosx+\frac{1+e}{2}$上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为(  )
A.[0,e2-e+1]B.[0,e2+e-1]C.[0,e2+e+1]D.[0,e2-e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴切于点(3,0).
(1)求函数f(x)的解析式;
(2)若g(x)+f(x)=-6x2+(3c+9)x,命题p:?x1,x2∈[-1,1],|g(x1)-g(x2)|>1为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=$\sqrt{2}$AP,延长OP交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)(  )
A.16B.20C.24D.48

查看答案和解析>>

同步练习册答案