ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=¦Ë£¬an+1=
23
an+n-4£¬bn=(-1)n(an-3n+21)
£¬ÆäÖЦËΪʵÊý£¬nΪÕýÕûÊý£®
£¨¢ñ£©¶ÔÈÎÒâʵÊý¦Ë£¬Ö¤Ã÷ÊýÁÐ{an}²»ÊǵȱÈÊýÁУ»
£¨¢ò£©ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Éè0£¼a£¼b£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐa£¼Sn£¼b£¿Èô´æÔÚ£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÕâÖÖÖ¤Ã÷ÊýÁв»ÊǵȱÈÊýÁеÄÎÊÌâʵ¼ÊÉϲ»ºÃ±íÊö£¬ÎÒÃÇ¿ÉÒÔÑ¡Ôñ·´Ö¤·¨À´Ö¤Ã÷£¬¼ÙÉè´æÔÚÍƳöì¶Ü£®
£¨2£©ÓÃÊýÁÐan¹¹ÔìÒ»¸öÐÂÊýÁУ¬ÎÒÃÇд³öÐÂÊýÁеĵÚn+1ÏîºÍµÚnÏîÖ®¼äµÄ¹Øϵ£¬·¢Ï֦˵ÄÈ¡ÖµÓ°ÏìÊýÁеÄÐÔÖÊ£¬ËùÒÔÒª¶Ô¦Ë½øÐÐÌÖÂÛ£®
£¨3£©¸ù¾ÝÇ°ÃæµÄÔËËãд³öÊýÁеÄÇ°nÏîºÍ£¬°Ñ²»µÈʽд³öÀ´¹Û²ì²»µÈʽµÄÌص㣬¹¹Ôìк¯Êý£¬¸ù¾Ýº¯ÊýµÄ×îÖµ½øÐÐÑéÖ¤£¬×¢ÒânµÄÆæżÇé¿öÒª·ÖÀàÌÖÂÛ£®
½â´ð£º½â£º£¨¢ñ£©Ö¤Ã÷£º¼ÙÉè´æÔÚÒ»¸öʵÊý¦Ë£¬Ê¹{an}ÊǵȱÈÊýÁУ¬ÔòÓÐa22=a1a3£¬¼´(
2
3
¦Ë-3)2=¦Ë(
4
9
¦Ë-4)?
4
9
¦Ë2-4¦Ë+9=
4
9
¦Ë2-4¦Ë?9=0
£¬Ã¬¶Ü£®
ËùÒÔ{an}²»ÊǵȱÈÊýÁУ®
£¨¢ò£©½â£ºÒòΪbn+1=£¨-1£©n+1[an+1-3£¨n+1£©+21]=£¨-1£©n+1£¨
2
3
an-2n+14£©
=
2
3
£¨-1£©n•£¨an-3n+21£©=-
2
3
bn
ÓÖb1=-£¨¦Ë+18£©£¬ËùÒÔ
µ±¦Ë=-18£¬bn=0£¨n¡ÊN+£©£¬´Ëʱ{bn}²»ÊǵȱÈÊýÁУº
µ±¦Ë¡Ù-18ʱ£¬b1=£¨¦Ë+18£©¡Ù0£¬ÓÉÉÏ¿ÉÖªbn¡Ù0£¬
¡à
bn+1
bn
=-
2
3
£¨n¡ÊN+£©£®
¹Êµ±¦Ë¡Ù-18ʱ£¬ÊýÁÐ{bn}ÊÇÒÔ-£¨¦Ë+18£©ÎªÊ×Ï-
2
3
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ®
£¨¢ó£©ÓÉ£¨¢ò£©Öª£¬µ±¦Ë=-18£¬bn=0£¬Sn=0£¬²»Âú×ãÌâÄ¿ÒªÇó£®
¡à¦Ë¡Ù-18£¬¹ÊÖªbn=-£¨¦Ë+18£©•£¨-
2
3
£©n-1£¬ÓÚÊǿɵÃ
Sn=-
n
i=1
i4=
1
5
n4+
1
2
n4+
1
3
n3-
1
30
n
£¬
Ҫʹa£¼Sn£¼b¶ÔÈÎÒâÕýÕûÊýn³ÉÁ¢£¬
¼´a£¼-
3
5
£¨¦Ë+18£©•[1-£¨-
2
3
£©n]£¼b£¨n¡ÊN+£©
µÃ
a
1-(-
2
3
)
n
£¼-
3
5
(¦Ë+18)£¼
b
1-(-
2
3
)
n

Áîf(n)=1-(-
2
3
)n£¬Ôò
¢Ù
µ±nΪÕýÆæÊýʱ£¬1£¼f£¨n£©¡Ü
5
3
£»µ±nΪÕýżÊýʱ£¬
5
9
¡Üf(n)£¼1
£¬
¡àf£¨n£©µÄ×î´óֵΪf£¨1£©=
5
3
£¬f£¨n£©µÄ×îСֵΪf£¨2£©=
5
9
£¬£®
ÓÚÊÇ£¬ÓÉ¢ÙʽµÃ
5
9
a£¼-
3
5
£¨¦Ë+18£©£¼
3
5
b?-b-18£¼¦Ë£¼-3a-18
£®
µ±a£¼b¡Ü3aʱ£¬ÓÉ-b-18¡Ý=-3a-18£¬²»´æÔÚʵÊýÂú×ãÌâÄ¿ÒªÇó£»
µ±b£¾3a´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐa£¼Sn£¼b£¬ÇҦ˵ÄÈ¡Öµ·¶Î§ÊÇ£¨-b-18£¬-3a-18£©
µãÆÀ£ºÕâµÀÌâÄ¿µÄÄѶÈÒª¸ßÓڸ߿¼ÌâµÄÄѶȣ¬Èôº¯ÊýÌâÊÇÒ»Ì×¾íµÄѹÖáÌ⣬¿ÉÒÔ³öµ½Õâ¸öÄѶȣ¬·ñÔò±¾ÌâÆ«ÄÑ£¬±¾Ð¡ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁеĶ¨Òå¡¢ÊýÁÐÇóºÍ¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶ºÍ·ÖÀàÌÖÂÛµÄ˼Ï룬¿¼²é×ۺϷÖÎöÎÊÌâµÄÄÜÁ¦ºÍÍÆÀíÈÏÖ¤ÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a=1£¬a1=2£¬a2£¾0£¬bn=
a1an+1
(n¡ÊN*)
£®ÇÒ{bn}ÊÇÒÔ
aΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
£¨¢ñ£©Ö¤Ã÷£ºaa+2=a1a2£»
£¨¢ò£©Èôa3n-1+2a2£¬Ö¤Ã÷ÊýÀý{cx}ÊǵȱÈÊýÀý£»
£¨¢ó£©ÇóºÍ£º
1
a1
+
1
a2
+
1
a3
+
1
a4
+
¡­+
1
a2n-1
+
1
a2n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=m£¬an+1=¦Ëan+n£¬bn=an-
2n
3
+
4
9
£®
£¨1£©µ±m=1ʱ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâµÄʵÊý¦Ë£¬{an}Ò»¶¨²»ÊǵȲîÊýÁУ»
£¨2£©µ±¦Ë=-
1
2
ʱ£¬ÊÔÅжÏ{bn}ÊÇ·ñΪµÈ±ÈÊýÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍµÈ±ÈÊýÁÐ{bn}Âú×㣺a1=b1=4£¬a2=b2=2£¬a3=1£¬ÇÒÊýÁÐ{an+1-an}ÊǵȲîÊýÁУ¬n¡ÊN*£¬
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚk¡ÊN*£¬Ê¹µÃak-bk¡Ê(
12
£¬3]
£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×㣺a1=¦Ë£¬an+1=
23
an+n-4£¬bn=£¨-1£©n£¨an-3n+21£©ÆäÖЦËΪʵÊý£¬ÇҦˡÙ-18£¬nΪÕýÕûÊý£®
£¨¢ñ£©ÇóÖ¤£º{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Éè0£¼a£¼b£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ¶ÔÈÎÒâÕýÕûÊýn£¬¶¼ÓÐa£¼Sn£¼b£¿Èô´æÔÚ£¬Çó¦ËµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•Ð¢¸ÐÄ£Ä⣩ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=1ÇÒbn=1-2an£¬bn+1=
bn
1-4 
a
2
n
£®
£¨I£©Ö¤Ã÷£ºÊýÁÐ{
1
an
}ÊǵȲîÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Çóʹ²»µÈʽ(1+a1)(1+a2)¡­(1+an)¡Ýk
1
b2b3¡­bnbn+1 
¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢µÄ×î´óʵÊýk£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸