精英家教网 > 高中数学 > 题目详情
给出下列命题:
①若
a
0
,则“
a
b
=
a
c
”是“
b
=
c
”成立的必要不充分条件
②若
a
=(3,4)
b
=(0,-1)
,则
a
b
方向上的投影是-4
③函数y=tan(x+
π
3
)
的图象关于点(
π
6
,0)
成中心对称
④“一个棱柱的各侧面是全等的矩形”是“这个棱柱是正棱柱”的充要条件
其中真命题是
 
分析:本题中的四个命题分别涉及向量,正切函数,棱柱的结构特征,可依据相关的知识对四个命题的正确性作出判断,找出正确命题
解答:解:①若
a
0
,则“
a
b
=
a
c
”是“
b
=
c
”成立的必要不充分条件,此是一个正确命题,因为当两向量“
b
=
c
”时,可以得出“
a
b
=
a
c
”成立,反之不一定成立;
②若
a
=(3,4)
b
=(0,-1)
,则
a
b
方向上的投影是-4,此命题正确,因为
a
b
方向上的投影是
a
b
|
a
|•|
b
|
=4;
③函数y=tan(x+
π
3
)
的图象关于点(
π
6
,0)
成中心对称,是正确命题,因为x=
π
6
是,x+
π
3
=kπ+
π
2
,k∈z
的一个解;
④“一个棱柱的各侧面是全等的矩形”是“这个棱柱是正棱柱”的充要条件,不是正确命题,因为在此条件下,底面不一定是正方形.
综上正确命题有①②③
故答案为①②③
点评:本题考查平面向量数量积的运算,解题的关键是熟练掌握四个命题涉及到的知识点,并且有根据这些知识作出正确判断的能力,本题的知识性较强,属于考查基本概念型题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①如果向量
a
b
c
共面,向量
b
c
d
也共面,则向量
a
b
c
d
共面;
②已知直线a的方向向量
a
与平面α,若
a
∥平面α,则直线a∥平面α;
③若P、M、A、B共面,则存在唯一实数x、y使
MP
=x
MA
+y
MB

④对空间任意点O与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x+y+z=1),则P、A、B、C四点共面; 在这四个命题中为真命题的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①已知
a
b
,则
a
•(
b
+
c
)+
c•
(
b
-
a
)
=
b
c
;②A,B,M,N为空间四点,若
BA
BM
BN
不构成空间的一个基底,那么A,B,M,N共面;③已知
a
b
,则
a
b
与任何向量都不构成空间的一个基底;④若
a
b
共线,则
a
b
所在直线或者平行或者重合.正确的结论为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•烟台三模)给出下列命题:
①存在实数a,使sinacosa=1;
②存在实数a,使sina+cosa=
3
2

③y=sin(
5
2
π-2x
)是偶函数;
④x=
π
8
是函数y=sin(2x+
5
4
π
)的一条对称轴方程;
⑤若α、β是第一象限角,则tanα>tanβ
其中正确命题的序号是
③④
③④
.(注:把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:福建省三明一中2012届高三11月学段考试数学理科试题 题型:013

用a、b、c表示不同的直线,r表示平面,给出下列命题:

(1)若a∥b,b∥c,则a∥c

(2)若a⊥b,b⊥c,则a⊥c

(3)若a∥r,b∥r,则a∥b

(4)若a⊥r,b⊥r,则a∥b

其中真命题的序号是

[  ]
A.

(1)(2)

B.

(2)(3)

C.

(1)(4)

D.

(3)(4)

查看答案和解析>>

科目:高中数学 来源:江苏省栟茶高级中学2012届高三第一次学情调研测试数学试题 题型:022

设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:

(1)若a∥α且b∥α,则a∥b;

(2)若a⊥α且a⊥β,则α∥β;

(3)若,则一定存在平面γ,使得

(4)若,则一定存在直线l,使得

上面命题中,所有真命题的序号是________.

查看答案和解析>>

同步练习册答案