分析 画出函数的图象,f(x)=1时有3个不等的实数根,f(x)=-a时,有4个不等的实数根,利用函数的图象,求解a的范围.
解答
解:函数f(x)=$\left\{\begin{array}{l}{{3}^{|x-1|}}&{x>0}\\{-{x}^{2}-2x+1}&{x≤0}\end{array}\right.$,的图象如图:
关于x的方程f2(x)+(a-1)f(x)=a,即f(x)=-a或f(x)=1
f(x)=1时有3个不等的实数根,f(x)=-a时,有4个不等的实数根,
由函数f(x)图象,可得-a∈(1,2),
∴a∈(-2,-1).
故答案为(-2,-1).
点评 本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈M,f(-x)=-f(x) | B. | ?x∈M,f(-x)≠-f(x) | C. | ?x∈M,f(-x)=-f(x) | D. | ?x∈M,f(-x)≠-f(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com