某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测。若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二理科数学试卷(解析版) 题型:填空题
设
分别是椭圆
的上下两个顶点,
为椭圆
上任意一点(不与点
重合),直线
分别交
轴于
两点,若椭圆
在
点的切线交
轴于
点,则
.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二文科数学试卷(解析版) 题型:解答题
在
中,角
所对的边分别为
。已知
,
.
(1)若
,求
的面积; (2)求
的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二文科数学试卷(解析版) 题型:填空题
若等差数列
和等比数列
的首项均为1,且公差
,公比
,则集合
的元素个数最多有 个.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测三数学试卷(解析版) 题型:解答题
已知椭圆
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆的方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
.证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练理科数学试卷(解析版) 题型:解答题
一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点
所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测理科数学试卷(解析版) 题型:解答题
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC, DE交AB于点F.求证:△PDF∽△POC.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com