某商场有甲、乙两种电子产品可供顾客选购.记事件A为“只买甲产品”,事件B为“至少买一种产品”,事件C为“至多买一种产品”,事件D为“不买甲产品”,事件E为“一种产品也不买”.判断下列事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)A与C;
(2)B与E;
(3)B与D;
(4)B与C;
(5)C与E.
(1)由于事件C“至多买一种产品”中有可能只买甲产品,故事件A与事件C有可能同时发生,故事件A与C不是互斥事件.
(2)事件B“至少买一种产品”与事件E“一种产品也不买”是不可能同时发生的,故事件B与E是互斥事件.又由于事件B与E必有一个发生,所以事件B与E还是对立事件.
(3)事件B“至少买一种产品”中有可能买乙产品,即与事件D“不买甲产品”有可能同时发生,故事件B与D不是互斥事件.
(4)若顾客只买一种产品,则事件B“至少买一种产品”与事件C“至多买一种产品”就同时发生了,所以事件B与C不是互斥事件.
(5)若顾客一件产品也不买,则事件C“至多买一种产品”与事件E“一种产品也不买”就同时发生了,事实上事件C与E满足E⊆C,所以二者不是互斥事件.
科目:高中数学 来源: 题型:
下列说法中,不正确的是( )
A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8
B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7
C.某人射击10次,击中靶心的频率是
,则他应击中靶心5次
D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4
查看答案和解析>>
科目:高中数学 来源: 题型:
解释下列概率的含义:
(1)某厂生产的电子产品合格的概率为0.997;
(2)某商场进行促销活动,购买商品满200元,即可参加抽奖活动,中奖的概率为0.6;
(3)一位气象学工作者说,明天下雨的概率是0.8;
(4)按照法国著名数学家拉普拉斯的研究结果,一个婴儿将是女孩的概率是
.
查看答案和解析>>
科目:高中数学 来源: 题型:
在一次随机试验中,事件A1,A2,A3发生的概率分别为0.2,0.3,0.5,则下列说法正确的是( )
A.A1∪A2与A3是互斥事件,也是对立事件
B.A1∪A2∪A3是必然事件
C.P(A2∪A3)=0.8
D.事件A1,A2,A3的关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:
(1)这3人的值班顺序共有多少种不同的排列方法?
(2)这3人的值班顺序中,甲在乙之前的排法有多少种?
(3)甲排在乙之前的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=(
)ax,a为常数,且函数的图象过点(-1,2).
(1)求a的值;
(2)若g(x)=4-x-2,且g(x)=f(x),求满足条件的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com