【题目】已知四棱锥
中,底面
为直角梯形,
平面
,且
,
,
.
![]()
(1)求证:平面
平面
;
(2)若
与平面
所成的角为
,求二面角
的余弦值.
【答案】(1)证明见解析(2)![]()
【解析】
(1)证明:取
的中点
,连接
,
,
.根据平面几何知识和线面垂直的判定可证得
平面
,再证得
,可证明平面
平面
.
(2)由线面角的定义可得
为
与平面
所成的角,再以点
为坐标原点,分别以
,
,
所在直线为
,
,
轴,建立如图所示的空间直角坐标系,求得平面
和平面
的法向量,由二面角的向量求解方法可求得二面角
的余弦值.
解:(1)证明:取
的中点
,连接
,
,
.
∵
,∴
.
又∵
,
,∴四边形
为正方形,则
.
∵
平面
,![]()
平面
,∴
.
∵
,∴
平面
.
∵
,
,∴四边形
为平行四边形,∴
,
∴
平面
.又![]()
平面
,
∴平面
平面
.
(2)∵
平面
,∴
为
与平面
所成的角,
即
,则
.
设
,则
,
,
.
以点
为坐标原点,分别以
,
,
所在直线为
,
,
轴,建立如图所示的空间直角坐标系,
则
,
,
,
,
.
∵
平面
,∴平面
的一个法向量
.
设平面
的法向量
,∵
,
,
则
,取
,则
.
设二面角
的平面角为
,∴
.
由图可知二面角
为锐角,故二面角
的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|+|x+1|.
(1)解关于x的不等式f(x)≤5;
(2)若函数f(x)的最小值记为m,设a,b,c均为正实数,且a+4b+9c=m,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
,
分别为
,
的中点.
![]()
(1)证明:
平面
;
(2)证明:平面
平面
;
(3)求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某苗木基地常年供应多种规格的优质树苗.为更好地销售树苗,建设生态文明家乡和美好家园,基地积极主动地联系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的购买合同的概率分别
、
、
,且基地是否得到三家公司的购买合同是相互独立的.
(1)若公司甲计划与基地签订300棵银杏实生苗的销售合同,每棵银杏实生苗的价格为90元,栽种后,每棵树苗当年的成活率都为0.9,对当年没有成活的树苗,第二年需再补种1棵.现公司甲为苗木基地提供了两种售后方案,
方案一:公司甲购买300棵银杏树苗后,基地需提供一年一次,共计两年的补种服务,且每次补种人工及运输费用平均为800元;
方案二:公司甲购买300棵银杏树苗后,基地一次性地多给公司甲60棵树苗,后期的移栽培育工作由公司甲自行负责.
若基地首次运送方案一的300棵树苗及方案二的360棵树苗的运费及栽种费用合计都为1600元,试估算两种方案下苗木基地的合同收益分别是多少?
(2)记
为该基地得到三家公司购买合同的个数,若
,求随机变量
的分布列与数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为2的正方形,
平面
,且
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)线段
上是否存在一点
,使二而角
等于45°?若存在,请找出点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,椭圆
上一点
与两焦点构成的三角形的周长为6,离心率为
,
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于
两点,问在
轴上是否存在定点
,使得
为定值?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com