精英家教网 > 高中数学 > 题目详情
若关于x的不等式的解集为,且函数在区间上不是单调函数,则实数的取值范围为 (   )
A.B.
C.D.
A

试题分析:由不等式的解集为可得的两根为,故可求得,所以由函数上不是单调函数,可知有解,当在有一解时有解得,当在有两解时有解得,综上可得,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在数集上的奇函数,且当时,成立,若,,,则的大小关系是( )
A.B.C.D.

查看答案和解析>>

同步练习册答案