精英家教网 > 高中数学 > 题目详情
已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.
(1)当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).(2)(-∞,0].
(1)∵f(x)=exax-1(x∈R),∴f′(x)=exa.令f′(x)≥0,得exa.当a≤0时,f′(x)>0在R上恒成立;当a>0时,有x≥ln a.综上,当a≤0时,f(x)的单调增区间为(-∞,+∞);当a>0时,f(x)的单调增区间为(ln a,+∞).
(2)由(1)知f′(x)=exa.∵f(x)在R上单调递增,
f′(x)=exa≥0恒成立,即a≤ex在R上恒成立.
x∈R时,ex>0,∴a≤0,
a的取值范围是(-∞,0].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=+ln x.
(1)当a=时,求f(x)在[1,e]上的最大值和最小值;
(2)若函数g(x)=f(x)-x在[1,e]上为增函数,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于(  )
A.1 B.2
C.0D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x2-ln x的单调递减区间为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yx2-ln x的单调减区间是 (  ).
A.(-1,1]B.(0,1]C.[1,+∞) D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的单调递减区间是(0,4),则=(   )
A.3B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的单调递减区间是,则实数      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式的解集为,且函数在区间上不是单调函数,则实数的取值范围为 (   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案