精英家教网 > 高中数学 > 题目详情
已知函数的单调递减区间是(0,4),则=(   )
A.3B.C.2D.
B

试题分析:由函数,所以.令.又因为单调递减区间是(0, 4),所以可以得到,解得.故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)利用(2)的结论证明:若,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数.的单调区间;
(2)设函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. 注:是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是(  )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的极小值点
C.-x0是-f(x)的极小值点
D.-x0是-f(-x)的极小值点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex(axb)-x2-4x,曲线yf(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求ab的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x)及其导函数f'(x)的图像都是连续不断的曲线,且对于实数a, b (a<b)有f'(a)>0,f'(b)<0,现给出如下结论:
①$x0∈[a,b],f(x0)=0;②$x0∈[a,b],f(x0)>f(b);
③"x0∈[a,b],f(x0)>f(a);④$x0∈[a,b],f(a)-f(b)>f' x0)(a-b).
其中结论正确的有

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间是(   )
A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)

查看答案和解析>>

同步练习册答案