精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)及其导函数f'(x)的图像都是连续不断的曲线,且对于实数a, b (a<b)有f'(a)>0,f'(b)<0,现给出如下结论:
①$x0∈[a,b],f(x0)=0;②$x0∈[a,b],f(x0)>f(b);
③"x0∈[a,b],f(x0)>f(a);④$x0∈[a,b],f(a)-f(b)>f' x0)(a-b).
其中结论正确的有
②④

试题分析:定义在R上的函数及其导函数的图象都是连续不断的曲线,且对于实数,有,说明在区间内存在,使,所以函数在区间内有极大值点,同时说明函数在区间内至少有一个增区间和一个减区间.由上面的分析可知,函数在区间上不一定有零点,故①不正确;因为函数在区间内有极大值点,与实数在同一个减区间内的极大值点的横坐标就是存在的一个,所以②正确;函数在区间的两个端点处的函数值无法判断大小,若,取,则③不正确;当,且是极大值点的横坐标时结论④正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I) 当,求的最小值;
(II) 若函数在区间上为增函数,求实数的取值范围;
(III)过点恰好能作函数图象的两条切线,并且两切线的倾斜角互补,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数单调递增区间;
(2)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数上单调递减,求实数的取值范围;
(Ⅲ)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数yx (a>0)的单调增区间为________,单调减区间为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x2-ln x的单调递减区间为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的单调递减区间是(0,4),则=(   )
A.3B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的单调递减区间是,则实数      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为,部分对应值如下表,

的导函数的图象如图所示.

下列关于的命题:
①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④函数最多有2个零点.
其中正确命题的序号是     (       )
A.①② B.③④ C.①②④ D.②③④.

查看答案和解析>>

同步练习册答案