精英家教网 > 高中数学 > 题目详情
已知函数的定义域为,部分对应值如下表,

的导函数的图象如图所示.

下列关于的命题:
①函数的极大值点为
②函数上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④函数最多有2个零点.
其中正确命题的序号是     (       )
A.①② B.③④ C.①②④ D.②③④.
C

试题分析:因为从导函数的图像可知函数上导函数大于零,所以是递增的.在上导函数小于零所以递减.所以①函数的极大值点为正确. ②函数上是减函数正确. ③如果当时,的最大值是2,那么的最大值为4;不正确的最大值都是5. ④函数最多有2个零点.当时就有两个零点.综上正确的序号是①②④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数.的单调区间;
(2)设函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=xln x的单调递减区间是 (  ).
A.B.C.D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex(axb)-x2-4x,曲线yf(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求ab的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x)及其导函数f'(x)的图像都是连续不断的曲线,且对于实数a, b (a<b)有f'(a)>0,f'(b)<0,现给出如下结论:
①$x0∈[a,b],f(x0)=0;②$x0∈[a,b],f(x0)>f(b);
③"x0∈[a,b],f(x0)>f(a);④$x0∈[a,b],f(a)-f(b)>f' x0)(a-b).
其中结论正确的有

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足的导函数,已知函数的图象如图所示.若两正数满足,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递增区间是(   )
A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)

查看答案和解析>>

同步练习册答案