精英家教网 > 高中数学 > 题目详情
已知函数f(x)=+ln x.
(1)当a=时,求f(x)在[1,e]上的最大值和最小值;
(2)若函数g(x)=f(x)-x在[1,e]上为增函数,求正实数a的取值范围.
(1) 最大值是0,最小值是ln 2-1   (2)
(1)当a=时,f(x)=+ln x,
f′(x)=,令f′(x)=0,得x=2.
∴当x∈[1,2)时,f′(x)<0,故f(x)在[1,2)上单调递减;
当x∈(2,e]时,f′(x)>0,故f(x)在(2,e]上单调递增.
∴f(x)在区间[1,e]上有唯一的极小值点,
故f(x)min=f(x)极小值=f(2)=ln 2-1.
又∵f(1)=0,f(e)=<0.
∴f(x)在区间[1,e]上的最大值f(x)max=f(1)=0.
综上可知,函数f(x)在[1,e]上的最大值是0,最小值是ln 2-1.
(2)∵g(x)=f(x)-x=+ln x-x,
∴g′(x)= (a>0),
设φ(x)=-ax2+4ax-4,由题意知,只需φ(x)≥0在[1,e]上恒成立即可满足题意.
∵a>0,函数φ(x)的图象的对称轴为x=2,
∴只需φ(1)=3a-4≥0,即a≥即可.
故正实数a的取值范围为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3ax-1
(1)若f(x)在实数集R上单调递增,求a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减,若存在,求出a的取值范围;若不存在,说明理由;
(3)证明f(x)=x3ax-1的图象不可能总在直线ya的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在定义域内可导,的图像如右图,则导函数的图像可能是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数y=f(x)的图像经过坐标原点O,且它的导函数y=f¢(x)的图像是如图所示的一条直线,则y=f(x)的图像一定不经过第     象限.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=(0<x<10)(  ).
A.在(0,10)上是增函数
B.在(0,10)上是减函数
C.在(0,e)上是增函数,在(e,10)上是减函数
D.在(0,e)上是减函数,在(e,10)上是增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是(  )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的极小值点
C.-x0是-f(x)的极小值点
D.-x0是-f(-x)的极小值点

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

同步练习册答案