精英家教网 > 高中数学 > 题目详情
设函数在定义域内可导,的图像如右图,则导函数的图像可能是(   )
C

试题分析:从的图像可以看出,单调递增,所以此时,可排除A、D,而当时,先增后减再增,所以时,是先正后负再正,可排除B,而C则符合要求,故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(1)令,讨论内的单调性并求极值;
(2)求证:当时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判断f(x)的单调性;.
(2)若x>1时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处有极大值
(1)求的解析式;
(2)求的单调区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)(  )
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则的大小关系是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=+ln x.
(1)当a=时,求f(x)在[1,e]上的最大值和最小值;
(2)若函数g(x)=f(x)-x在[1,e]上为增函数,求正实数a的取值范围.

查看答案和解析>>

同步练习册答案