精英家教网 > 高中数学 > 题目详情
已知函数上为增函数,且
(1)求的值;
(2)当时,求函数的单调区间和极值;
(3)若在上至少存在一个,使得成立,求的取值范围.
(1)
(2)函数的单调递增区间是,递减区间为,极大值
(3)的取值范围为

试题分析:(1)利用上恒成立,
转化成上恒成立,从而只需
,结合正弦函数的有界性,得到,求得
(2)研究函数的单调性、极值,一般遵循“求导数,求驻点,讨论区间导数值的正负,确定单调性及极值”,利用“表解法”,往往形象直观,易于理解.
(3)构造函数
讨论时,的取值情况,根据上恒成立,得到上单调递增,利用大于0,求得.
试题解析:(1)由已知上恒成立,
,∵,∴
上恒成立,只需
,∴只有,由;            4分
(2)∵,∴

,则
的变化情况如下表:





+
0



极大值

即函数的单调递增区间是,递减区间为,有极大值
7分
(3)令
时,由,且
∴此时不存在使得成立;
时,
,∴,又,∴上恒成立,
上单调递增,∴
,则
故所求的取值范围为.                          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

的导数为,若函数的图象关于直线对称,且函数处取得极值.
(I)求实数的值;
(II)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)设,试讨论单调性;
(2)设,当时,若,存在,使,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数yx2-ln x的单调减区间是 (  ).
A.(-1,1]B.(0,1]C.[1,+∞) D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为(      )
A.9万件B.11万件C.12万件D.13万件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在(0, 1)上不是单调函数,则实数的取值范围为   _____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式的解集为,且函数在区间上不是单调函数,则实数的取值范围为 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数有大于零的极值点,则的取值范围是_________.

查看答案和解析>>

同步练习册答案