精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,n∈N*,且满足a2+a4=14,S7=70.
(1)求数列{an}的通项公式;
(2)若bn,则数列{bn}的最小项是第几项,并求该项的值.
(1)an=3n-2(2)最小项是第4项,该项的值为23
(1)设公差为d,则有解得∴an=3n-2.
(2)Sn [1+(3n-2)]=
bn=3n+-1≥2-1=23,
当且仅当3n=,即n=4时取等号.∴{bn}最小项是第4项,该项的值为23.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是公比为的等比数列,且成等差数列.
⑴求的值;
⑵设是以为首项,为公差的等差数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,an是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…,以Tn表示到第n年所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,且S4=-62,S6=-75,求:
(1){an}的通项公式an及其前n项和Sn
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}中,a1=1,(n+1)an+1=nan(n∈N*),则该数列的通项公式an=________.

查看答案和解析>>

同步练习册答案