精英家教网 > 高中数学 > 题目详情
为了预防甲型H1N1流感,某学校对教室用某种药物进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(
1
16
)t-a
(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式.
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回答教室.
(1)由于图中直线的斜率为k=
1
0.1
=10

所以图象中线段的方程为y=10t(0≤t≤0.1),
又点(0.1,1)在曲线y=(
1
16
)t-a
上,所以1=(
1
16
)0.1-a

所以a=0.1,因此含药量y(毫克)与时间(小时)之间的函数关系式为
y=
10t(0≤t≤0.1)
(
1
16
)t-0.1
(t>0.1)
(5分)

(2)因为药物释放过程中室内药量一直在增加,即使药量小于0.25毫克,学生也不能进入教室,
所以,只能当药物释放完毕,室内药量减少到0.25毫克以下时学生方可进入教室,即(
1
16
)t-0.1
<0.25,
解得t>0.6
所以从药物释放开始,至少需要经过0.6小时,学生才能回到教室.(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1+
x-|x|
4

(Ⅰ)用分段函数的形式表示函数f(x);
(Ⅱ)在坐标系中画出函数f(x)的图象;
(Ⅲ)在同一坐标系中,再画出函数g(x)=
1
x
(x>0)
的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)
1
x
的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)对任意x,y∈R,满足f(x)+f(y)=f(x+y)+2,当x>0时,f(x)>2.
(1)求证:f(x)在R上是增函数;
(2)当f(3)=5时,解不等式:f(a2-2a-2)<3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)在定义域(0,+∞)上单调递增,且满足f(xy)=f(x)+f(y).
(1)证明:f(
x
y
)=f(x)-f(y)

(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=-f(x+2),且x∈(-1,0)时,f(x)=2x+
1
5
,则f(log220)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A.-
3
4
(1-31007
B.-
3
4
(1+31007
C.-
1
4
(1-
1
31007
D.-
1
4
(1+
1
31007

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知的定义域和值域都是,则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一元二次不等式对一切实数都成立,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

 若,则____         

查看答案和解析>>

同步练习册答案