精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A.-
3
4
(1-31007
B.-
3
4
(1+31007
C.-
1
4
(1-
1
31007
D.-
1
4
(1+
1
31007
∵当x∈[0,2]时,f(x)=2x-x2
∴当x=0时,f(0)=0,当x=1时,f(1)=1,
又∵f(x+2)=-3f(x),
∴当x=-2时,f(0)=-3f(-2),故f(-2)=0,
当x=-1时,f(1)=-3f(-1),故f(-1)=-
1
3

以此类推,f(-4)=f(-6)=…=f(-2014)=0,
故f(0)+f(-2)+f(-4)+…+f(-2014)=0,
∵f(x+2)=-3f(x),
f(x)
f(x+2)
=-
1
3

故f(-1),f(-3),f(-5),…,f(-2013)构成以f(-1)为首项,-
1
3
为公比的等比数列,
∴f(-1)+f(-3)+f(-5)+…+f(-2013)=
-
1
3
×[1-(-
1
3
)1007]
1-(-
1
3
)
=-
1
4
(1+
1
31007
)

∴f(0)+f(-1)+f(-1)+…+f(-2014)=[f(0)+f(-2)+f(-4)+…+f(-2014)]+[f(-1)+f(-3)+f(-5)+…+f(-2013)]=0+-
1
4
(1+
1
31007
)
=-
1
4
(1+
1
31007
)

∴f(0)+f(-1)+f(-1)+…+f(-2014)=-
1
4
(1+
1
31007
)

故选:D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax+1,f(x)在x∈[-3,1上恒有f(x)-3成立,求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 设函数f(x)的定义域为R,对任意实数xy都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证: f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在(0,+∞)上的增函数f(x)满足:对任意的x>0,y>0都有f(xy)=f(x)+f(y),
(1)求f(1)的值;
(2)请举出一个符合条件的函数f(x);
(3)若f(2)=1,解不等式f(x2-5)-f(x)<2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了预防甲型H1N1流感,某学校对教室用某种药物进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(
1
16
)t-a
(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式.
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回答教室.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
1,x为有理数
π,x为无理数
,下列结论不正确的(  )
A.此函数为偶函数
B.此函数是周期函数
C.此函数既有最大值也有最小值
D.方程f[f(x)]=1的解为x=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=ax2+ax-1在R上恒满足f(x)<0,则a的取值范围是(  )
A.a≤0B.a<-4
C.-4<a<0D.-4<a≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=
6-x2(x≤6)
x2+x-2(x>6)
,则f(
6
f(2)
)的值为(  )
A.
15
16
B.-
27
16
C.
8
9
D.18

查看答案和解析>>

同步练习册答案