精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a•2x+a-22x+1
是奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)求函数的值域.
分析:(1)根据函数f(x)为定义域为R的奇函数,则f(0)=0,代入解析式可求出a的值;
(2)由(1)知f(x)=
2x-1
2x+1
=1-
2
2x+1
,所以f(x)为增函数,任取x1<x2∈R,然后判定f(x1)-f(x2)的符号,根据函数单调性的定义即可判定;
(3)令y=
2x-1
2x+1
,求出2x,根据2x的范围可求出y的范围,从而求出函数的值域.
解答:解:(1)f(x)的定义域为R,且为奇函数,∴f(0)=0,
∴a=1
(2)由(1)知f(x)=
2x-1
2x+1
=1-
2
2x+1
,所以f(x)为增函数
证明:任取x1<x2∈R
f(x1)-f(x2)=1-
2
2x1+1
-1+
2
2x2+1
=
2(2x1-2x2
(2x1+1) (2x2+1)

∵x1<x2∈R∴2x12x2
∴f(x1)-f(x2)<0即f(x1)<f(x2
∴f(x)为R上的增函数.
(3)令y=
2x-1
2x+1
2x=
-1-y
y-1

而2x>0∴2x=
-1-y
y-1
>0

∴-1<y<1
所以函数f(x)的值域为(-1,1)
点评:本题主要考查了函数的奇偶性,以及函数的单调性和函数的值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案