精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=loga(x-2)+4(a>0且a≠1),其图象过定点P,角α的始边与x轴的正半轴重合,顶点与坐标原点重合,终边过点P,则$\frac{sinα+2cosα}{sinα-cosα}$=10.

分析 根据函数图象过定点,由函数解析式确定出定点P坐标,进而利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可得到结果.

解答 解:∵函数f(x)=loga(x-2)+4(a>0且a≠1),其图象过定点P,
∴P坐标为(3,4),
∵角α的始边与x轴的正半轴重合,顶点与坐标原点重合,终边过点P,
∴sinα=$\frac{4}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{4}{5}$,cosα=$\frac{3}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{3}{5}$,
则原式=$\frac{\frac{4}{5}+\frac{6}{5}}{\frac{4}{5}-\frac{3}{5}}$=10,
故答案为:10

点评 此题考查了同角三角函数基本关系的运用,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数y=lgsin$\frac{x}{2}$的定义域是(  )
A.(4kπ,4kπ+$\frac{π}{2}$)(k∈Z)B.(4kπ,4kπ+π)(k∈Z)C.(4kπ,4kπ+$\frac{3π}{2}$)(k∈Z)D.(4kπ,4kπ+2π)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知曲线y=e-x
①若曲线在点P处的切线平行于直线2x+y+1=0,则P点坐标是(-ln2,2);
②若曲线在点P处的切线垂直于直线ex-y+1=0,则P点坐标是(1,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三内角A,B,C满足2B=A+C.则b=2,a+c的取值范围为(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用杨辉三角解不等式${C}_{m}^{4}$>${C}_{m}^{7}$,不等式的解集为{7,8,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(x+y-2z)5的展开式中,xy2z2的系数是(  )
A.120B.-120C.60D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线Г:4x2-$\frac{{y}^{2}}{{a}^{2}}$=1的左右焦点分别为F1,F2,离心率e=2,若动点P满足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{2}$,则直线PF1的倾斜角θ的取值范围为(  )
A.[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π)B.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)C.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)D.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)-g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立.则(  )
A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数
C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x<1},B={x∈Z|x2≤4},则A∩B=(  )
A.{-2,1,0}B.{-2,-1,0,1,2}C.{-1,0}D.{-2,-1}

查看答案和解析>>

同步练习册答案