| A. | F(x),G(x)都是增函数 | B. | F(x),G(x)都是减函数 | ||
| C. | F(x)是增函数,G(x)是减函数 | D. | F(x)是减函数,G(x)是增函数 |
分析 根据题意,不妨设x1>x2,f(x)单调递增,可得出f(x1)-f(x2)>g(x1)-g(x2),且f(x1)-f(x2)>-g(x1)+g(x2),
根据单调性的定义证明即可.
解答 解:对任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立,
不妨设x1>x2,f(x)单调递增,
∴f(x1)-f(x2)>g(x1)-g(x2),且f(x1)-f(x2)>-g(x1)+g(x2),
∴F(x1)=f(x1)+g(x1),F(x2)=f(x2)+g(x2),
∴F(x1)-F(x2)=f(x1)+g(x1)-f(x2)-g(x2)
=f(x1)-f(x2)-(g(x2)-g(x1)>0,
∴F(x)为增函数;同理可证G(x)为增函数,
故选A.
点评 考查了对绝对值不等式的理解和利用定义证明函数的单调性.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b=a2 | B. | a=b2 | C. | b=a3 | D. | a=b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com