精英家教网 > 高中数学 > 题目详情
15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一条渐近线与直线2x+y-3=0垂直,则该双曲线的离心率为$\frac{\sqrt{5}}{2}$.

分析 利用双曲线的渐近线与直线2x+y-3=0垂直,推出a,b的关系,然后求解双曲线的离心率即可.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=l(a>0,b>0)的一条渐近线ay=bx与直线2x+y-3=0垂直,
可得:$\frac{b}{a}=\frac{1}{2}$,可得$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{1}{4}$,解得:e=$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,已知a4=9,a6+a7=28.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.利用杨辉三角解不等式${C}_{m}^{4}$>${C}_{m}^{7}$,不等式的解集为{7,8,9,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线Г:4x2-$\frac{{y}^{2}}{{a}^{2}}$=1的左右焦点分别为F1,F2,离心率e=2,若动点P满足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{2}$,则直线PF1的倾斜角θ的取值范围为(  )
A.[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π)B.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π)C.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)D.[$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线mx2-2my2=1的一个焦点坐标为(0,-2),那么常数m=(  )
A.$\frac{3}{8}$B.-$\frac{3}{8}$C.-$\frac{\sqrt{5}}{4}$D.-$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)-g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立.则(  )
A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数
C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列各题:
①若p:?x∈R,x2-x≤0,则¬p:?x0∈R,x${\;}_{0}^{2}$-x0≥0
②命题:若xy=0,则x=0或y=0,其否命题是:若xy≠0,则x≠0且y≠0
③?m∈R,使f(x)=(m-1)x${\;}^{{m}^{2}-4m+3}$为幂函数,且在(0,+∞)上单调递减.
正确命题有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a,b∈R,则“a>1,且b>1”是“a+b>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.i为虚数单位,负数i2016的共轭复数为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

同步练习册答案