精英家教网 > 高中数学 > 题目详情
14.己知数列{an}满足:an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≥{a}_{1}}\\{{a}_{n}+2,}&{{a}_{n}<{a}_{1}}\end{array}\right.$(n=1,2,…),若a3=3,则a1=$\frac{3}{4}$.

分析 由已知数列递推式结合a3=3分类求得a1

解答 解:由an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≥{a}_{1}}\\{{a}_{n}+2,}&{{a}_{n}<{a}_{1}}\end{array}\right.$,
①若a3≥a1,则a3=3=2a2,${a}_{2}=\frac{3}{2}$,又a2<a1与a2=a1+2相矛盾,
∴a2≥a1,${a}_{2}=\frac{3}{2}=2{a}_{1}$,得${a}_{1}=\frac{3}{4}$;
②若a3<a1,则a3=a2+2,∴a2=1,
由a2=1=2a1,a1=$\frac{1}{2}$,与a3<a1不符.
∴${a}_{1}=\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题考查数列递推式,考查了数列的函数特性,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.y=cos$\frac{cosx}{2+sinx}$(x∈R)的值域为[cos$\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=lgsin$\frac{x}{2}$的定义域是(  )
A.(4kπ,4kπ+$\frac{π}{2}$)(k∈Z)B.(4kπ,4kπ+π)(k∈Z)C.(4kπ,4kπ+$\frac{3π}{2}$)(k∈Z)D.(4kπ,4kπ+2π)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.现有5位教师要带三个班级外出参加志愿者服务,要求每个班级至多两位老师带队,且教师甲、乙不能单独带队,则不同的带队方案有54.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,已知a4=9,a6+a7=28.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.a+b>0B.a-b<0C.ab<b2D.$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知曲线y=e-x
①若曲线在点P处的切线平行于直线2x+y+1=0,则P点坐标是(-ln2,2);
②若曲线在点P处的切线垂直于直线ex-y+1=0,则P点坐标是(1,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的三内角A,B,C满足2B=A+C.则b=2,a+c的取值范围为(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)-g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)-f(x2)]2>[g(x1)-g(x2)]2恒成立.则(  )
A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数
C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数

查看答案和解析>>

同步练习册答案