分析 由已知数列递推式结合a3=3分类求得a1.
解答 解:由an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≥{a}_{1}}\\{{a}_{n}+2,}&{{a}_{n}<{a}_{1}}\end{array}\right.$,
①若a3≥a1,则a3=3=2a2,${a}_{2}=\frac{3}{2}$,又a2<a1与a2=a1+2相矛盾,
∴a2≥a1,${a}_{2}=\frac{3}{2}=2{a}_{1}$,得${a}_{1}=\frac{3}{4}$;
②若a3<a1,则a3=a2+2,∴a2=1,
由a2=1=2a1,a1=$\frac{1}{2}$,与a3<a1不符.
∴${a}_{1}=\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题考查数列递推式,考查了数列的函数特性,体现了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (4kπ,4kπ+$\frac{π}{2}$)(k∈Z) | B. | (4kπ,4kπ+π)(k∈Z) | C. | (4kπ,4kπ+$\frac{3π}{2}$)(k∈Z) | D. | (4kπ,4kπ+2π)(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+b>0 | B. | a-b<0 | C. | ab<b2 | D. | $\frac{1}{a}$<$\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | F(x),G(x)都是增函数 | B. | F(x),G(x)都是减函数 | ||
| C. | F(x)是增函数,G(x)是减函数 | D. | F(x)是减函数,G(x)是增函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com